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It is demonstrated that metallic horseshoe-shaped �also referred to as u-shaped� nanostructures can exhibit a
magnetic resonance in the optical spectral range. This magnetic plasmon resonance is distinct from the purely
geometric LC resonance occurring in perfectly conducting split rings because the plasmonic nature of the metal
plays the dominant role. Similarly to the electrical surface plasmon resonance, the magnetic plasmon resonance
is determined primarily by the metal properties and nanostructure geometry rather than by the ratio of the
wavelength and the structure’s size. Magnetic plasmon resonance occurs in nanostructures much smaller in size
than the optical wavelength. Electromagnetic properties of periodically assembled horseshoe-shaped nanostruc-
tures are investigated, and the close proximity of the electrical and magnetic plasmon resonances is exploited
in designing a negative index metamaterial. Close to the magnetic plasmon resonance frequency both magnetic
permeability � and electric permittivity � can become negative, paving the way for the development of
subwavelength negative index materials in the optical range.

DOI: 10.1103/PhysRevE.73.036609 PACS number�s�: 41.20.Cv, 42.70.Qs, 42.25.Bs, 71.45.Gm

I. INTRODUCTION

Extending the range of electromagnetic properties of
naturally occurring materials motivates the development of
artificial �or meta� materials. For example, it has recently
been demonstrated that metamaterials may exhibit such in-
teresting properties as negative dielectric permittivity ��0
�see, for example, Refs. �1,2��, negative magnetic permeabil-
ity ��0 �3�, and even both �4,5�. The double-negative case
of ��0 and ��0 �often referred to as the left-handed and
negative refractive regime� is particularly interesting because
of the possibility of making a “perfect” lens with subwave-
length spatial resolution �6�. In addition to the super resolu-
tion, unusual and sometimes counter-intuitive properties of
negative index materials �NIMs�, which are also referred to
as left-handed materials �LHMs�, make them very promising
for applications in resonators, waveguides, and other micro-
wave and optical elements �7–10�.

Negative refraction has been convincingly demonstrated
in the microwave regime �5,8,9,11�. For microwave NIMs,
artificial magnetic elements �providing ��0� are the split-
ring resonators or the swiss roll structures. In the microwave
part of the spectrum, metals can be considered as perfect
conductors because the skin depth is much smaller than the
metallic feature size. The strong magnetic response is
achieved by operating in the vicinity of the LC resonance of
the split ring �3,12�. The same technique of obtaining ��0
using split rings was recently extended to mid-IR �12� by
scaling down the dimensions of the split rings. In the micro-
wave, as well as �to a lesser degree� in the mid-IR part of the
spectrum, metals can be approximated as perfect conductors
because the skin depth is much smaller than the feature size
of the structure. Therefore, the frequencies of the LC reso-

nances are determined entirely by the split ring geometry and
size but not by the electromagnetic properties of the metal. In
accordance with this, the ring response is �resonantly� en-
hanced at some particular ratio of the radiation wavelength
and the structure size. Thus we refer to the LC resonances of
perfectly conducting metallic structures as geometric LC
�GLC� resonances.

The situation drastically changes in the optical part of the
spectrum, where thin �subwavelength� metal components be-
have very differently when their sizes become less than the
skin depth. For example, the electrical surface plasmon reso-
nance �SPR� occurs in the optical and near-IR parts of the
spectrum due to collective electron oscillations in metal
structures. Many important plasmon-enhanced optical phe-
nomena and applications of metal nanocomposites are based
on the electrical SPR �see, for example, Ref. �13��. Plas-
monic nature of the electromagnetic response in metals for
optical–mid-IR frequencies is the main reason why the origi-
nal methodology of GLC resonances in the microwave–
mid-IR spectral range is not extendable to higher frequen-
cies.

For the optical range, NIMs with a negative refractive
index were first demonstrated in Ref. �14� where the authors
observed the real part of the refractive index n=−0.3 at the
telecommunication wavelength of 1.5 �m. In that report the
authors experimentally verified their early theoretical predic-
tion for negative refraction in an array of parallel metal na-
norods �15�. The first experimental observation of negative n
in the optical range was followed by another successful ex-
periment �16�. Note that the losses become progressively im-
portant with increasing frequency toward the optic band.
Moreover, the elementary cell of the resulting structure is on
order of the wavelength. Making a true NIM requires the cell

PHYSICAL REVIEW E 73, 036609 �2006�

1539-3755/2006/73�3�/036609�10�/$23.00 ©2006 The American Physical Society036609-1

http://dx.doi.org/10.1103/PhysRevE.73.036609


size to be less than � /2. Therefore, miniaturization of the cell
size is of major interest, and can be accomplished, for ex-
ample, by utilizing plasmonic effects �17–20�.

It is also necessary to take into account from the begin-
ning that dielectric permittivity �=��+ i�� and magnetic per-
meability �=��+ i�� are complex values. The structure that
exhibits the negative real dielectric permittivity ���−0.7
and negative real of magnetic permeability ���−0.3 in
green light ���0.5 �m� has been investigated in Ref. �21�.
However, rather large imaginary components ����1.0 at the
resonance� has not allowed the observation of the negative
refraction.

Thus the demonstration of a negative index meta-material
in the regime where plasmonic effects are important remains
elusive. Plasmonic effects must be correctly accounted for to
design a metamaterial with optical magnetism. Below we
show that specially arranged metal nanoparticles can sup-
port, along with the electrical SPR, magnetic plasmon reso-
nance �MPR�. The MPR’s resonance frequency �r can be
made independent of the absolute characteristic structure size
a and � /a�2�c /�a. The only defining parameters are the
plasmonic permittivity �m��� and the structure geometry.
Such structures act as optical nanoantennas by concentrating
large electric and magnetic energies on the nanoscale at the
optical frequencies. The magnetic response is characterized
by the magnetic polarizability �M with the resonant behavior
similar to the electric SPR polarizability �E: real part of �M
changes the sign near the resonance and becomes negative
for ���r, as required for negative index meta-materials. We
show that the electrostatic resonances must replace �or
strongly modify� GLC resonances in the optical/mid-IR
range if a strong magnetic response is desired.

The idea of using electrostatic resonances for inducing
optical magnetism is relatively recent. For example, electro-
static resonances of periodic plasmonic nanostructures have
been recently employed to induce magnetic properties due to
close proximity of adjacent nanowires �17,18�. Higher mul-
tipole electrostatic resonances were shown �19� to hybridize
in such a way as to induce magnetic moments in individual
nanowires. Strong electrostatic resonances of regularly
shaped nanoparticles �including nanospheres and nanowires�
occur for −2��m� �−1. The resistive damping characterized
by the ratio �m� /�m� of the imaginary and real parts of the
dielectric permittivity of a metal is fairly strong for those
frequencies corresponding to ��m� � �1. However, �m� /�m� is
known to decrease for ��m � 	1. Therefore, there is a consid-
erable incentive to design nanostructures exhibiting reso-
nances for �m� 
−1. Such horseshoe-shaped structures, first
suggested in Ref. �22� are described below. Spectrally, these
structures support strong magnetic moments at the frequen-
cies higher than the microwave–mid-IR frequencies sup-
ported by the traditional split ring resonators �see Refs.
�3,12� for details� and lower than the ultraviolet frequencies
supported by the sub-wavelength plasmonic crystals de-
scribed in Refs. �18,19�. Conceptually, the horseshoe-shaped
structures described here are distinct from the earlier low
frequency structures because they are not relying on the GLC
resonance for producing a strong magnetic response because
plasmonic properties of the metal are very important when
the sizes are small and the operational frequencies are high.

Below we present a three-dimensional theory of the mag-
netic resonance in a plasmonic structure and related two-
dimensional numerical simulations.

Specifically, here we develop a comprehensive theory and
perform detailed numerical simulations for negative index
metamaterials based on horseshoe-shaped structures. The
possibility of optical magnetism in such structures was first
theoretically predicted �22� and recently experimentally veri-
fied �23�. Closely related split-ring resonator structures were
also shown �24� to possess optical magnetism. Here we dem-
onstrate that such horseshoe-shaped structures may have
negative dielectric permittivity, in parallel with negative
magnetic permeability, and thus they can be used for build-
ing a metamaterial with a negative-refractive index.

II. ANALYTICAL THEORY OF MAGNETIC PLASMON
RESONANCES

We first consider a pair of parallel metallic rods. The ex-
ternal magnetic field excites the electric current in the pair of
the rods as shown in Fig. 1. The magnetic moment associated
with the circular current flowing in the rods results in the
magnetic response of the system. Suppose that an external
magnetic field H= 	0,H0 exp�−i�t� ,0
 is applied perpen-
dicular to the plane of the pair. �We suppose that magnetic
field is along y axis and the rods are in 	x ,z
 plane.� The
circular current I�z� excited by the time-varying magnetic
field flows in the opposite directions in the nanowires as
shown in Fig. 1. The displacement currents flowing between
the nanowires close the circuit. We introduce the “potential
drop” U�z�=�a

b Edl between the pair where the integration is
along the line 	a�z� ,b�z�
. To find the current I�z�, we inte-
grate the Faraday’s Law curl E= ik�H0+Hin� over the con-
tour 	a ,b ,c ,d
 in Fig. 1, where k=� /c is a wave vector, and
Hin=curlA is the magnetic field induced by the current. It is
assumed that the nanowire length 2a is much larger than the
distance d between the nanowires and the radius b of a nano-
wire. We also assume that kd
1. Under these assumptions,
the vector potential A is primarily directed along the nano-
wires �z direction�. The use of the integral form of Faraday’s
law yields

�IR − ik2Az + dU/dz��z = − ikH0d�z , �1�

FIG. 1. Currents in two parallel metal wires excited by external
magnetic field H. Displacement currents, “closing” the circuit, are
shown by dashed lines.
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where the pair impedance R�2/ ���b2��8i / ��b2��, where
�=1+ i4�� /�
−1 is the metal complex permittivity, and
±IR /2 are the electric fields on the surface of the nanowires.
Note that the wire resistivity is explicitly taken into account.
This sets our calculation apart from the earlier work on the
resonances of conducting split ring resonators �25� and con-
ducting stick composites �2� because plasmonic resonances
of the wire are now fully accounted for.

Electric field E can be always presented in terms of the
vector potential A and electric potential 
 as E=−�
+ ikA.
In the standard Lorentz gage the electric potential 
 equals
to 
�r1�=�exp�ikr12�q�r2� /r12 dr2 and the vector potential
A�r1�=c−1�exp�ikr12�j�r2� /r12 dr2, where r12= �r1−r2�, and
q and j are charge and current density correspondingly. In the
case of two long wires the currents flow inside the wires.
Correspondingly the vector potential A has the only compo-
nent in the direction z of the wires A= 	0,0 ,Az
. Since the
vector potential A is perpendicular to the line 	a�z� ,b�z�
 the
potential drop U in Eq. �1� equals U�z�=�a

b Edl=
a−
b,
where 
a and 
b are the electric potential in the points a�z�
and b�z�. We consider the excitation of the antisymmetric
mode when the currents in the wires are the same in absolute
value but are opposite in the direction �see Fig. 1�. Corre-
spondingly the electric charge per unite length Q�z�=Qa=
−Qb. We assume that the diameter b of the wire is much
smaller than the distance d between them and the wire length
2a	d. Then the potential drop U�z� between the pair esti-
mates as U�z�=Q�z� /C, where the interwire capacitance C is
independent of the coordinate z and is estimated in the Ap-
pendix as C��4 ln�d /b��−1.

The vector potential Az�z� is proportional to the electric
current Az�z�= �L /c� I�z� /2, where the wire pair inductance is
estimated as L�4 ln�d /b� �see the Appendix�. Note that both
C and L are purely geometric factors that do not depend on
the plasmonic nature of the rods. The product LC can be
estimated as LC�1. Yet, in the above consideration we
never assumed that the wires are made from the perfect metal
or from a metal with real conductivity, i.e., imaginary per-
mittivity. Moreover, the two wire nanoantenna has most in-
teresting behavior when metal dielectric constant is real and
negative. The plasmonic nature of the metal is accounted for
below.

We substitute U�z� and Az�z� into Eq. �1�, taking into ac-
count the charge conservation law dI /dz= i�Q�z�, and obtain
a differential equation for the current

d2I�z�
dz2 = − g2I�z� −

Cd�2

c
H0, �2�

where −a�z�a , I�−a�= I�a�=0, and the parameter g is
given as

g2 = k2�LC − 8C��kb�2�m�−1� . �3�

The two-wire antenna is resonantly excited when G=ga
=N� /2, where N is an integer. Note that the material prop-
erties of the metal enter the resonant parameter G through
the dielectric permittivity �m. In the context of the wire pair,
the earlier discussed GLC resonances �3,12,15,25,27� corre-
spond to the wire thickness b much larger than the skin depth

�k2 ��m � �−1/2. This approximation, typically valid for micro-
wave and mid-IR frequencies, yields g=k /
LC and the reso-
nant condition ka=� /2, also known as the antenna reso-
nance.

Let’s consider the opposite �“electrostatic,” as explained
below� limit of �8C��kb�2�m�−1 � 	1. In the electrostatic re-
gime G depends only on the metal permittivity and the as-
pect ratio

G2 � − 2�a/b�2 ln�d/b�/�m, �4�

but not on the wavelength and absolute length of the wires.
Sharp resonance in Eq. �2� requires that G2 be positive, pos-
sibly with a very small imaginary part. Indeed, for IR/visible
frequencies �m is negative �with a smaller imaginary part� for
typical �Ag, Au, etc.� low loss metals. Metal dielectric con-
stant �m can be approximated by the Drude formula

�m��� � �b − ��p/��2/�1 − i��/�� , �5�

where �b is a “polarization” constant, �p is the plasma fre-
quency, and ��=1/� is the relaxation rate. For considered
here silver nanoantennas the constant �b approximates as
�b�5, the plasma frequency �p�9.1 and the relaxation rate
���0.02 �29�. For example, at �=1.5 �m the silver dielec-
tric constant estimates as �m� �−120 and �m� / ��m � �0.025.

We consider now the electric field in the system of two
conducting rods still assuming the electrostatic limit when
the propagation constant G is given by Eq. �4�. The electric
charge Q�z� and the current I�z� �Q�z�= �i��−1dI�z� /dz� are
given by solution of Eq. �2�

Q�z� = Q0
sin�Gz/a�

cos G
, �6�

I�z� = i
Q0a�

G
�1 −

cos�Gz/a�
cos G

� , �7�

where Q0= ibdkH0

−�m / �4
2 ln3/2�d /b��. Using the Lorentz

gauge we can write the equation for the electric potential


�r� =� q�r1�
exp�ikR1�

R1
dr1 −� q�r2�

exp�ikR2�
R2

dr2,

�8�

where q�r1� and q�r2� are electric charges distributed over
the surface of the rods 1 and 2, R1= �r−r1�, R2= �r−r2�, and
the integration goes over the rods 1 and 2. We consider the
electric field between the rods, i.e., in 	z ,x
 plane �see Fig. 1�
and assume that �x � 
a, �z � �a, and the distances to the rods
d1= �x−d /2 � 	b and d2= �x+d /2 � 	b. Then we can integrate
in Eq. �8� over the cross section of the rod after which it
takes the one-dimension form


�x,z� = �
−a

a

Q�z1�� exp�ikR1�
R1

−
exp�ikR2�

R2
�dz1, �9�

where the linear charge density Q�z1�, obtained from q�r1� by
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integration over the rod circumference, is given by Eq. �6�
�Q�z1�=−Q�z2��, the distances R1 and R2 take the form R1

=
d1
2+ �z−z1�2, R2=
d2

2+ �z−z1�2. Two terms in the square
brackets in Eq. �9� cancel when �z−z1 � �d, as it is discussed
in the Appendix. Since we assume that kd
1 and d
a we
can put the exponents exp�ikR1��exp�ikR1��1 and extend
the integration in Eq. �9� from z1=−� to z1=�. Resulting
integral is solved explicitly and we obtain the analytical
equation for the electric potential in the system of two nano-
wires


�x,z� = 2 ln�d/2 + x

d/2 − x
�Q�z� , �10�

where Q�z� is given by Eq. �6�. Extrapolation of this result to
the surface of the wires gives the potential drop U�z�
=
�d /2−b ,z�−
�−d /2+b ,z�=4 ln�2d /b�Q�z�. Thus we ob-
tain that the interwire capacitance C=Q�z� /U�z� =4 ln�d /b�
is a constant, which is independent of the coordinate z, in
agreement with estimate done in the Appendix.

The vector potential A= 	0,0 ,A
 is calculated in a similar
way

A�x,z� �
1

c
�

−a

a

I�z1�� exp�ikR1�
R1

−
exp�ikR2�

R2
�dz1

�
1

c
�

−�

�

I�z1�� 1

R1
−

1

R2
�dz1 �

2

c
ln�d/2 + x

d/2 − x
�I�z� ,

�11�

where the electric current is given by Eq. �7�. Extrapolating
to the vector potential A to the surface of the first wire �x
=d /2−b� we obtain 2cA=LI, where the interwire inductance
L equals to L�4 ln �d /b�. The inductance L is also indepen-
dent of the coordinate z in agreement with the Appendix.
Since the interwire capacitance C and inductance L both re-
main constant along the wires, the Maxwell equations reduce
to an ordinary differential Eq. �2�.

The electric field E=−�
+ ikA is calculated from the po-
tentials �10� and �11� as

Ex = −
2Q0d

�d/2�2 − x2sin�Gz

a
�sec�G� , �12�

Ez = −
2Q0

aG
ln�d/2 + x

d/2 − x
� �13�

��G2 cos�Gz

a
�sec�G� − a2k2�1 − cos�Gz

a
�sec�G��� ,

�14�

where we still assume that �x � 
a, �z � �a, �x−d /2 � 	b, and
�x+d /2 � 	b. The transverse electric field Ex changes its sign
with the coordinate z vanishing at z=0. Yet, on average the
ratio �Ex � / �Ez� is estimated near the resonance �G�� /2� as
�Ex � / �Ez � �a /d	1, that is the transversal electric field is on
average much larger than the longitudinal field at MPR. Near
the wires transverse field Ex increases even more: �Ex �
�Q0 /b. The potential drop �U between the points x1=d /2

+ l /2 and x2=d /2− l /2 �2b� l
d� is estimated from Eq.
�13� as −2lQ�z� /d, and the corresponding electric field Eout

�− 2Q�z� /d. This field should be considered an external
field for the wire at the coordinate y=d /2. The internal trans-
verse potential drop across the wire is estimated as �Uin �
�b �Eout � / ��m � �2 �Q�z� �b / �d ��m � �, where �m is the metal
dielectric constant, which is assumed to be large ��m � 	1.
The problem of the internal transverse field closely re-
sembles the classical problem of the field induced in a di-
electric cylinder by another charged cylinder placed parallel
to the first cylinder. An elegant solution of the problem can
be found in Ref. �26�, Sec. 7. In the discussed case ��m�,
d /b	1 it gives the above obtained estimate for Uin.The ratio
of the potential drop Uin across a wire to the potential drop
U�z� between the wires equals

�Uin�z�
U�z�

� �
b

d��m�ln�d/b�

 1. �15�

For any practical purpose we can neglect Uin in comparison
to U, which allows us to reduce the problem of charge and
current distribution in the two wire system to the solution of
the ordinary differential equation �2� for the electric current
I�z�. Condition �15� is important for the developed analytical
theory of MPR in the system of two thin rods. However, we
can envision a system �e.g., two closely packed metal nano-
wires or hemispheres� that still reveals MPR, but condition
�15� is not applied.

To clarify the nature of the resonance, it is instructive to
compute the ratio of the electric and magnetic energies at the
resonance

EE

EM
� c2

C−1� �Q�z��2dz

L� �I�z��2dz

�
g2

k2 � 1 −
2

ln�d/b�k2b2��m�
,

�16�

where we assume that the spatial frequency g, given by Eq.
�3�, is close to the resonance �ga�� /2� and use the expres-
sions for the specific capacitance C��4 ln�d /b��−1 and in-
ductance L�4 ln�d /b� derived in the Appendix. In the elec-
trostatic limit �8C��kb�2�m�−1 � 	1 we obtain UE /UM 	1 thus
explaining the name given to this regime. Because of the
symmetry of the electric potential considered here, it is clear
that such polarization cannot be induced by any uniform
electric field. Therefore, the discussed resonance can be clas-
sified as the dark mode �31�.

The electric current I�z� is found from Eq. �2� and used
to calculate the magnetic moment of the wire pair m
= �2c�−1��r� j�r��dr, where j�r� is the density of the current
and the integration is over the two nanowires. Thus we ob-
tain

m =
1

2
H0a3 ln�d/b��kd�2 tan G − G

G3 . �17�

The metal permittivity �m has a large negative value in the
optical–near-IR range while its imaginary part is small;
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therefore, the magnetic moment m has a resonance at G
�� /2 �see Eq. �3�� when m attains large values. For a typi-
cal metal we can use the Drude formula �5� for �m, where the
relaxation parameter is small �� /�
1. Then the normalized
magnetic polarizability �M has the following form near the
MPR:

�M =
4�m

H0V
=

16ad�p

�2�r

2 ln�d/b�

�1 − �/�r − i�� /�2�r��−1,

�18�

where V=4abd, and MPR frequency �r

=b � �p
2 ln�d /b� / �4a�. Note that the magnetic moment
contains a prefactor �2da /c2
1 that is small in the electro-
static limit valid for subwavelength nanostructures, as was
predicted earlier �19�. Close to the resonance �G=� /2� the
enhancement factor can be very large for optical and infrared
frequencies because of the high quality of the plasmon reso-
nance for �r
�p. Therefore, the total prefactor in Eq. �18�
can be of the order of one, thereby enabling the excitation of
a strong MPR.

Although the electric field energy near resonance is also
very high, it is primarily concentrated in the perpendicular to
the wires component of the electric field connecting the two
wires as it was discussed after Eqs. �12� and �13�. If the wave
vector of the propagating wave is in the plane of the wires,
and perpendicular to the wires, then the described above
MPR does not strongly affect the electric field component
parallel to the wires. The integral from the electric field,
which is generated in magnetic resonance between the wires,
exactly equals to zero as it follow from Eqs. �12� and �13�.
Envisioning a composite material that consists of such wire
pairs, we expect that the magnetic plasmon resonance will
not contribute to the dielectric permittivity in the direction
parallel to the wires. Therefore, such a medium is not bi-
anisotropic �25� and can be described by two effective sepa-
rate parameters � and �. Prior work on inducing magnetic
moments in nanostructured materials �18,19� in the electro-
static regime dealt with highly symmetric �round� nanowires.
Here we demonstrate that magnetic moment can also be in-
duced in the strongly nonsymmetric �specifically, horseshoe-
shaped� nanostructures with a large negative value of �.

We now consider a metal nanoantenna that has a horse-
shoe shape, which is obtained from a pair of nanowires by
shorting it at one of the ends �see Fig. 2�. When the quasi-
static condition �8C��kb�2�m�−1 � 	1 holds, the electric cur-
rent I�z� in a horseshoe nanoantenna can be obtained from
Eq. �2�, where the boundary condition changes to Iz=a
= �dI /dz�z=0=0 and, as above, a	d	b. It is easy to check
that the magnetic polarizability �M is still given by Eq. �18�,
where a is now equal to the total length of the horseshoe
nanoantenna. Therefore, the horseshoe nanoantenna provides
the same magnetic polarizability �M at the twice shorter
length. Magnetic permeability �=�1+ i�2 for a metamaterial
where the silver horseshoe nanoantennas are oriented in one
direction �“z” direction in Fig. 1� and are organized in the
periodic square lattice is shown in Fig. 2; the optical param-
eters for silver were taken from Ref. �29�. As one can see in
the figure, the negative magnetism can be observed, for ex-

ample, in the near-infrared part of the spectrum, including
the telecommunication wavelength of 1.5 �m.

III. NUMERICAL SIMULATIONS OF TWO-DIMENSIONAL
STRUCTURES

To obtain a magnetically active in the optical range mate-
rial, it might be more convenient to employ �and much easier
to model� a “two-dimensional” metamaterial, with the
nanoantennas having a horseshoe shape in x ,y plane and
infinitely extended in the z direction. When the quasistatic
condition �k2bd�m � 
1 holds �b and d are thickness and dis-
tance between the opposite walls, correspondingly�, the MPR
frequency �r is defined by the equation G2=2a
−2/ ��mbd�
=� /2. The resonant magnetic field is shown in Fig. 3.

The finite elements code FEMLAB �28� was used to calcu-
late the field distribution. Note that the magnetic field inside
the horseshoe is large and of the opposite sign with the ex-
ternal field H0, resulting in a negative magnetic permeability
in a close proximity to the magnetic plasmon resonance. To
estimate the effective magnetic permeability we use an ear-
lier developed approach �13�, which gives �z=1
+ p�sH0�−1��Hin−H0�ds= �32/��a2p�−2�� /2−G2�−1 for a
plasmonic crystal composed by the horseshoe nano antennas,
where Hin is the magnetic field inside a horseshoe, the inte-

FIG. 2. Optical magnetic permeability �=�1+ i�2 ��1: conti-
nous line, �2: dashed line� estimated from Lorenz-Lorentz formula
for the composite containing � shaped silver nanoantennas; volume
concentration p=0.3; left curves: a=200 nm, d=50 nm, b=13 nm;
right curves a=600 nm, d=90 nm, b=13 nm.

FIG. 3. �Color online� Magnetic plasmon resonance in a silver
horseshoe-shaped nanoantenna placed in a maximum of external
field H0 which is directed perpendicular to the plane; the frequency
corresponds to �=1.5 �m; silver dielectric constant is calculated
from the Drude formula �5�.
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gration is over the area s=da, p is the concentration of the
nanoantennas organized in a square lattice. For a good opti-
cal metal, such as gold or silver, �z becomes large and nega-
tive for ���r. For example, the magnetic permeability
�both real and imaginary parts� of a metamaterial composed
of silver horseshoes has a sharp resonance for �=�r shown
in Fig. 4.

The real part �1 of the optical magnetic permeability
turns negative for ���r. Figure 4 also reveals the spectral
range ��1 �m where �1 is still less than −1 while the rela-
tive losses are small: �=�2 /�1
1. The losses are crucial for
a such application of NIM as the perfect lens. Losses could,
in principle, be further reduced by cooling the metal nanoan-
tennas to cryogenic temperatures. Simple estimates show
that even at the liquid nitrogen temperature the electron
mean free path becomes of the order of the horse shoe size.
The optical properties of metals are not well understood
when the mean free path becomes larger than the nanoan-
tenna size. For these reasons we only consider metamaterials
at room temperature.

To illustrate the effective magnetic properties of the
horseshoe metamaterials, we simulated em wave propagation
in the plasmonic crystal composed from silver nanoantennas
shown in Fig. 3. �The first three horseshoe columns are well
seen in Fig. 5�a�.� The em wave is incident on the crystal
from the left, its vacuum wavelength is �=1.4 �m. The
wave is evanescent in the crystal, as can be clearly seen from
Fig. 5, and the transmittance T�10−6. This evanescence is
due to the negative magnetic permeability of the crystal that
could be rather large at the resonance �see Fig. 4�. One way
of making this crystal transparent is to fill the space between
the columns of the horseshoes by a material with negative
dielectric constant �=−3. We speculate that such a modifica-
tion can lead to a double-negative metamaterial. This is con-
firmed by the numerical simulations. The results are shown
in Fig. 5 �right�. Indeed, the addition of a negative-� material
turns our negative-� metamaterial into transparent NIM.
Note that the negative-� material was added only between
the adjacent columns of horseshoe-shaped nanoantennas. No
additional material was placed in the exterior of the nanoan-
tenna. This was done intentionally because modification of
the nanostructure region where most of the magnetic field is
concentrated is known �30� to affect the permeability effec-
tive permittivity.

Interestingly, the horseshoes themselves can exhibit a
double-negative behavior when they are closely packed. We
designed a two-dimensional dense periodic structure consist-

ing of alternating up and down horseshoe nanoantennas. One
half of the elementary cell is shown in Fig. 6�a�; another half
of the elementary sell is obtained by 180� degree rotation in
the xy plane. �The structure then repeats itself in x and y
directions; separation between antenna centers is 80 nm,
horizontal periodicity is 160 nm, vertical periodicity is
400 nm; see Fig. 5.� The dispersion relation ��kx� for the
electromagnetic wave propagating through the periodic
structure in x direction has been calculated by numerically
solving Maxwell’s equation for magnetic field Hz. For com-
putational simplicity, we have assumed a hypothetical loss-
less plasmonic material with the frequency-dependent dielec-
tric permittivity �=1−�p

2 /�2, where 2�c /�p=225 nm. The
frequency � and the wave vector k are normalized to �0
=2�c /�0 and k0=2� /�0, respectively, where �0=1.5 �m.

Remarkably, one of the propagating modes �shown in Fig.
6�b�� exhibits the left-handedness: its group velocity vgr
=�� /�k opposes its phase velocity. Figure 6�a� shows the
magnetic field profile and the electric field inside the elemen-
tary cell for kx=0 �magnetic cutoff condition corresponding
to �=0�. Magnetic field is concentrated inside the horse-
shoes, and has opposite signs in the adjacent horseshoes. The
dominant field in the structure is Ex which does not contrib-
ute to the Poynting flux in the propagation direction. Note
that arrows in Fig. 6 indicate the value the electric field takes
at their origin. Then Fig. 6 clearly indicates that the electric

FIG. 4. Optical magnetic permeability �=�1+ i�2 ��1: continu-
ous line, �2: dashed line� of the composite containing silver
nanoantennas shown in Fig. 3 organized in a square lattice; volume
concentration p=0.4.

FIG. 5. �Color online� Wave propagation through a two-
dimensional �infinitely extended in the normal to the page direction�
plasmonic crystal near the plasmon magnetic resonance. The crystal
is composed of the u-shaped nanoantennas shown in Fig. 3, volume
filling ratio p=0.4, �=1.4 �m. Magnetic field H of the incident em
wave is directed along z axis perpendicular to plane of picture;
Hz=1 in the incident wave. �Top� Spaces between the horseshoes
are filled with vacuum: no propagation. �Bottom� Spaces between
the horseshoes are filled with a hypothetical �=−3 material: wave
propagates into the structure.
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field of MPR is mainly confined inside the horseshoes and is
almost negligible in the metal. As we have mentioned above
there is half of the elementary cell in Fig. 6. In another half
cell the Ex field has opposite direction so that the average Ex
is zero. The electric field is primarily potential �i.e., can be
derived from an electrostatic potential�, but has a nonvanish-
ing solenoidal component that produces the magnetic field.
The potential drop between the metal arms is much larger
than the potential drop between external and internal inter-
faces of an arm. This behavior of the MPR electric field,
obtained from direct computer simulations, resembles our
analytical results for two wire system �see discussion at Eqs.
�12� and �13��. The fact that the dominant electric field Ex
does not change the sign inside the cell along the direction of
the propagation indicates that the mode in question does not
owe its negative dispersion to the band-folding effect com-
mon in photonic crystals. The left-handed behavior occurs in
the vicinity of �=1.88 �m, which is close to the MPR reso-
nance. The negative � necessary for the negative refractive
index is induced by the proximity of the dipole-type electro-
static resonances �18�.

IV. CONCLUSIONS

In conclusion, the phenomenon of a magnetic plasmon
resonance in metallic horseshoe-shaped split rings was de-
scribed. This resonance is distinctly different from the geo-
metric LC resonance described earlier for split rings because
it is determined by the plasmonic properties of the metal.
This work paves the way to designing metallic metamaterials
that are magnetically active in the optical and near-infrared
spectral ranges. Presented three-dimensional analytic calcu-
lations and two-dimensional numerical simulations reveal
that resonantly enhanced magnetic moments can be induced
in very thin �thinner than a skin depth� split rings with typi-
cal dimensions much shorter than the wavelength �on the
order of 100 nanometers�. Periodic arrays of such horseshoe-
shaped nanoantennas can be used to design left-handed
metamaterials by exploiting the proximity of electric reso-

nances in the dielectric permittivity � and magnetic perme-
ability �.
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APPENDIX

We derive equations for the capacitance C and inductance
L between two parallel wires of the radius b and length a
separated by the distance d. We suppose from the beginning
that b
d and d
a. We also suppose that the dielectric con-
stant �m of the wires is large in absolute value ��m � 	1
whereas the skin depth ���k
�m�−1	b as it is explained in
the text. To find the capacitance C we first calculate the
electric potential �a in the point with coordinate ra at the
surface of the wire �point a in Fig. 1� obtaining

�a =� q1�r1�
exp�ikra1�

ra1
dr1 +� q2�r2�

exp�ikra2�
ra2

dr2,

�A1�

where ra1= �ra−r1�, ra2= �ra−r2�, q1 and q2 are the electric
charges distributed over the surface of the rods; the integra-
tion goes over the surface of the first �a ,d� and second �b ,c�
rods in Fig. 1. For further consideration we choose the coor-
dinate system 	x ,y ,z
 with z axis along the �a ,d� rod, origin
in the center of the system and the x axis connecting the axes
of the rods so that y axis is perpendicular to the plane of two
rods. We introduce the vector d= 	d ,0 ,0
 between the wires
and two-dimensional unit vector ��
�= 	cos 
 , sin 

 in
	x ,y
 plane, where 
 is the polar angle. Then the vectors in
Eq. �A1� can be written as ra�
a ,za�= 	b��
a�+d /2 ,za
,
r1�
1 ,z1�= 	b��
1�+d /2 ,z1
, and r2�
2 ,z2�= 	b��
2�
−d /2 ,z2
. It follows from the symmetry of the problem that

FIG. 6. �Color online� Plasmonic crystal composed from the u-shaped metal nanoantennas; separation between antenna centers is 80 nm.
Magnetic �color and contours� and electric �arrows� fields inside a periodic array of horseshoe-shaped nanoantennas at the cutoff �kx=0�. �b�
Dispersion relation � vs kx for a left-handed electromagnetic wave.
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the electric charge q1�
 ,z�=−q2�
+� ,z� �recall that we
consider antisymmetric mode when the electric currents in
the rods are equal in absolute values but follows in the op-
posite directions�. We rewrite Eq. �A1� splitting it in two
parts

�a � �a
�0� + �a

�1�, �A2�

�a
�0��za,
a� = �


=0

� �
z=−a

a

q�
,z�� 1


�z2 + b2��1
2

�A3�

−
1


�z2 + �b��2 − d�2
dzbd
 , �A4�

�a
�1� � � q�r1�

exp�ikra1� − 1

ra1
dr1

−� q�r2�
exp�ikra2� − 1

ra2
dr2, �A5�

where �z=za−z, ��1=�a−�= 	cos 
a−cos 
 , sin 
a−sin 

,
��2=�a+�= 	cos 
a+cos 
 , sin 
a+sin 

. Note that di-
mensionless vectors ��1 and ��2 satisfy ���1�, ���2 � �2 so
that the second terms in the radicals in Eq. �A3� are much
less than a.

The electric currents in the rods and, correspondingly,
electric charge q changes with coordinate z on the scale �a
which is much larger than the distance d between the rods.
Therefore we can neglect z variation of the electric charge
for ��z � �d. On the other hand the term in the square brack-
ets in Eq. �A3� vanishes as �d2 / ��z�3 for ��z � �d. This al-
lows to replace in Eq. �A3� the charge q�z ,
� by its value
q�za,
a� in the observation point ra obtaining

�a
�0��za,
a� = �


=0

2�

q�za,
��
z=−a

a � 1


�z2 + b2��1
2

�A6�

−
1


�z2 + �b��2 − d�2
dzbd
; �A7�

the accuracy of this replacement is about �d /a�2
1. Since
we consider the quasistatic limit when the distance between
the rods d
� and the metal dielectric constant ��m � 	1 the
potential lines in 	x ,y
 plane are close to the static case.
Therefore we can safety suppose that the angle distribution
of the electric charge q�z ,
� is the same as it would be in the
case of two infinite metal cylinders in the static case:
q�z ,
�=Q�z�
�d /b�2−4/ �2��d+2b cos 
��, where Q�z� is
the electric charge per unit length of the rod so that
�
=0


=2�q�z,
�bd
=Q�z�. Then the integral in Eq. �A6� gives
the

�a
�0��z� = Q�z�arcosh� d2

2b2 − 1� + O„�d/a�2
… , �A8�

where the second term includes all corrections to the integral
�A3� due to finite size of the system. For the thin wires,
considered here, when the radius b is much smaller than the

distance d between the wires the potential �a
�0� approximates

as

�a
�0��z� � Q�z�2�ln�d/b�� . �A9�

The second term �a
�1� in Eq. �A2� is small in the limit of

a
�, i.e., kra1, kra2
1. The real part of �a
�1� gives a small

correction ��d /a�2 to the potential �a
�0� that can be neglect.

The imaginary part is important regardless of its absolute
value since it gives so-called radiative losses. To estimate the
losses we assume that b /d
1 and neglect the angle depen-
dence of the charge distribution. Then we expand Eq. �A5� in
series of k and linearly approximate Q�z��q1z �recall that
Q�z� is an odd function of z� obtaining

�a
�1��z� � − iQ�z��ak�3�kd�2/45, �A10�

where we neglect the terms with higher orders on k as well
as all terms on the order of �bk�2.

Due to the symmetry of the system the potential differ-
ence U=�a−�b between points a and b �see Fig. 1; za=zb�
equals to U=2�a. The capacitance C defined as C
=Q�z� /U�z� is given by

1

C
� 2 arcosh��d/b�2/2 − 1� − i

2

45
�ak�3�kd�2 �A11�

�4 ln�d

b
� − i

2

45
�ak�3�kd�2, �A12�

where the first term is the capacitance between two parallel
infinite cylinders �see Ref. �26�, Chap. 3�; the second term
gives the radiative losses due to the retardation effects.

Consider now the inductance L between the wires. To find
the inductance L we first calculate the vector potential Aa in
the point with coordinate ra inside the wire. We neglect the
edge effects and assume that the vector potential is parallel to
the axes of the wires obtaining

Aa =
1

c
� j�r�� exp�ikra1�

ra1
−

exp�ikra2�
ra2

�dr , �A13�

where ra1= �ra−r� and ra2= �ra−r+d�, j�r1� is the density of
the current and the integration goes over the volume of the
first wire. We consider the quasistatic case when the skin
effect is small �kb
��m�
1�. Then the electric current uni-
formly distributes over the cross section of a wire and j�r�
= I�z� / ��b2�. Following the procedure used above for calcu-
lating the electric potential, the vector potential is expressed
as Aa=Aa

�0�+Aa
�1�, where

Aa
�0� =

1

c
� I�z�

�b2� 1

ra1
−

1

ra2
�dr , �A14�

Aa
�1� =� I�z�

�b2� exp�ikra1� − 1

ra1
−

exp�ikra2� − 1

ra2
�dr .

�A15�

The term Aa
�0� estimates in the same way as �a

�0�. As result we
obtain the vector potential Aa

�0� averaged over the cross-
section of the wire in the following form:
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Aa
�0��z� �

I�z�
2c

�4 ln�d

b
� + 1� , �A16�

where I�z� is electric current, and we neglect terms on the
order �b /d�2
1 and �d /a�2
1. To estimate Eq. �A15� we
expand it in series on k obtaining that the linear term equals
to zero, the k2 term gives small correction ���kd�2� to Aa

�0�

and the third order on k gives the radiative losses, namely,

Aa
�1� � i�kd�2k

1

c
� I�z�dz � 2i

I�z�
c

�kd�2ka , �A17�

where we rather arbitrary neglect variation of the current
over the rod length in transition to the second estimate. We
obtain inductance L form the equation Aa−Ab=2Aa
= �L /c�I�z� as

L = 4 ln�d

b
� + 1 + 4i�kd�2ka .

The first two terms correspond to the self-inductance per unit
length of a system of two parallel infinite wires �Ref. �26�,
Chap. 34�. This estimate as well as Eq. �A12� are certainly
invalid near the ends of the rods, but in calculating the cur-
rent distribution I�z� and magnetic moment this region is
unimportant.

We are now in a position to compare the radiation losses
�given by imaginary parts of capacitance C and inductance
L� and the ohmic loss in the metal wires. In near infrared
spectral region the dielectric constant �m for a “good” optical
meal �Ag, Au, etc.� can be estimated from the Drude formula
�5� as �m������p /��2�1− i�� /��−1, where �p is plasma
frequency and �� 
�
�p is the relaxation rate. Thus
we obtain that the real part of the rod resistance ROhm
�8��� /�p

2��a /b2� should be compared with “radiation” re-
sistance Rrad��kd�2�ka�2 /c. For the silver nanowires, con-
sidered in the paper, the Ohmic losses either larger �ROhm

�Rrad� or much larger �ROhm	Rrad� than the radiation
losses. Therefore we can neglect the imaginary parts ofthe
capacitance C and inductance L and approximate them for
simplicity as

L �
1

C
� 4 ln

d

b
. �A18�

This estimate is of logarithmic accuracy; its relative error is
on the order of �4 lnd /b�−1. Note that the radiation losses
crucially depend on the parameter ka. Magnetic plasmon
resonance address in this paper becomes very broad when
ka�1, placing a rather sever constraint on the length 2a of
the wire.
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